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Abstract

Refined theories for accurate predictions of the onset of the parametric
instabilities and the ensuing post-critical solutions are employed to investi-
gate on how these instabilities are influenced by commonly neglected effects
in shells and rods such as inertia terms, shear deformations, and material
nonlinearities (Antman, 2005; Antman and Calderer, 1987; Antman, 2001).

Parametrically excited systems are pervasive in mechanics (e.g., dynamic
buckling of columns, rings and shells, water waves in vertically forced contain-
ers, stability of general motions). In particular, parametrically forced rings
and cylindrical shells are of significant interest in engineering applications such
as aircraft fuselages or turbo machineries where the forcing is represented by
the gradient between the inner and outer pressures. Although the theory of
parametrically excited linear discrete systems governed by linear ordinary-
differential equations is well established (Yukubovich and Starzhinskii, 1975;
Nayfeh and Mook, 1979), a comprehensive theory of parametrically excited
nonlinear systems is far from being achieved. Moreover, only a few works have
treated parametrically excited structural systems taking into account inertia,
geometric and material nonlinearities.

Among others, Bolotin (1964) studied the Mathieu equation with cubic
nonlinearities while, more recently, Rand and co-workers (2004) have inves-
tigated nonlinear Mathieu equations with either quadratic damping or cubic
springs. In the quadratically-damped Mathieu equation, they showed the
existence of a secondary bifurcation in which a pair of limit cycles come to-
gether and disappear (a saddle-node of limit cycles). In parameter space,
this secondary bifurcation appears as a curve which emanates from one of
the transition curves of the linear Mathieu equation. Further, Rand (1996)
studied a two-term truncation of a parametrically excited PDE, and showed,
using averaging, that the normal form of the system exhibits a rich diversity
of dynamical behaviors.

When dealing with parametric excitations in spatially continuous struc-
tural systems, to overcome discretization errors, that can be also qualitative in
the worst scenario, there is a need to rigorously treat, e.g. via asymptotics, the
governing parametrically forced PDE’s instead of dealing with their reduced-
order counterparts (Lacarbonara, 1999). In the present work, an asymptotic



multiple-scale treatment of parametrically forced nonlinear PDE’s, represen-
tative of cylindrical shells and rods suffering bending, extension and shear
deformations, is presented. Considering nonlinearly visco-elastic cylindrical
shells and rings under hydrostatic pressure, general results about the leading
classes of motions are discussed; namely, breathing motions, shearless mo-
tions and general motions of shells and rings undergoing extension, bending
and shear deformations.

It is shown that when the shell or ring are subject to uniform pulsating
pressure with frequency being nearly twice the frequency of the breathing
mode, the ring or shell suffer a principal parametric resonance resulting into
high-amplitude radial motions. Moreover, these motions are of the softening
or hardening type depending on the constitutive law. Hence, the threshold
constitutive laws delimiting softening from hardening breathing motions are
obtained in closed form.

Subsequently, enforcing the inextensibilty and unshearability constraints,
purely bending motions are investigated. The normal forms governing the
slow-flow dynamics of the directly excited flexural mode and its companion
mode are delivered by the asymptotic treatment in the case of an individual-
mode instability. Again, in the space of the parameters regulating the nonlin-
early elastic parts of the constitutive laws, we determined the regions where
the ring is softening or hardening. In particular, when the constitutive func-
tion is linearly elastic, the flexural motions are all softening in agreement
with previous analytical, numerical and experimental investigations (Evensen,
1966; Ganapathi et al., 2003).

The instabilities arising from multi-mode parametric resonances are also
discussed. It is worth mentioning that in previous works (Chin et al., 1997),
parametrically excited two-to-one interactions were investigated in buckled
beams considering low-order geometric nonlinearities only. In this work, the
prominent role of the nonlinear visco-elastic constitutive functions as well as
that of the internal kinematic constraints on the parametric instabilities are
highlighted within the context of a geometrically exact mechanical formula-
tion.
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